Abstract

The relationship of [3H]imipramine recognition sites and serotonergic function was investigated by simultaneously determining the desipramine-defined and sodium-dependent components of [3H]imipramine binding and the serotonin levels and uptake in hippocampus of rats without and with selective lesion of serotonergic neurons with 5,7-dihydroxytryptamine. In control rats, the desipramine-defined [3H]imipramine binding to hippocampal membranes showed a high affinity (Kd = 2 nM) and low affinity (Kd = 31 nM) component. In contrast, the Scatchard analysis of sodium-dependent binding revealed a single class of sites of high affinity (Kd = 1.5 nM). Displacement of sodium-dependent [3H]imipramine binding by cold imipramine resulted in a steep curve best fitted to a one-site model. Sodium-dependent binding of [3H]imipramine at 4 nM concentration represented only about 38% of desipramine-defined binding. 5,7-Dihydroxytryptamine treatment resulted in marked reduction of hippocampal serotonin concentration and uptake without any changes in norepinephrine levels. Virtually only the low affinity component of desipramine-defined [3H]imipramine binding was detected by Scatchard analysis in 5,7-dihydroxytryptamine lesioned rats. The desipramine-defined "specific" [3H]imipramine binding in hippocampi of lesioned rats was decreased by 46%, whereas the sodium-dependent binding was only 18% of that seen in controls. Desipramine-defined specific binding in absence of sodium was not altered by lesion to serotonergic neurons. The results suggest that desipramine-defined specific [3H]imipramine binding may not be appropriate for studying the role of imipramine sites in relation to serotonin neuronal uptake and that determination of sodium-dependent binding components of both [3H]imipramine binding and serotonin uptake should be used in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.