Abstract
In the present paper, we calculate the sodium void reactivity worth of fast critical assemblies without whole-lattice homogenization in order to reduce errors associated with lattice homogenization. Firstly, we solve a neutron transport benchmark problem simulating fast critical assemblies composed of thin material plates with a discrete ordinates transport solver. The discrete ordinates transport solutions agree well with the Monte Carlo reference solutions; hence, we confirm the validity of the deterministic transport calculations for the sodium void reactivity worth of lattice-heterogeneous critical assemblies. Thereafter, the existing experimental data are calculated without whole-lattice homogenization. The result suggests that the lattice homogenization results in the overestimation of the leakage component of sodium void reactivity worth when the leakage component parallel to plate boundaries is dominant. Utilizing the numerical method without whole-lattice homogenization and the nuclear data JENDL-3.3, numerical solutions agree with the experimental data within 3σ of the experimental uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.