Abstract

Botrytis cinerea causes gray mold resulting in enormous financial loss. Fungicide resistance of B. cinerea has become a serious issue in food safety and agricultural environmental protection. Sodium valproate (SV) has been used in clinical trials; thus, it is an excellent candidate for fungicide development, considering its safety. However, the antifungal activity remains unclear. SV was effective against B. cinerea by enhancing acetylation of histone H3, including H3K9ac, H3K14ac, and H3K56ac. A transcriptomics analysis revealed that the expression of 1,557 genes changed significantly in response to SV. A pathway enrichment analysis identified 16 significant GO terms, in which molecular functions were mainly involved. In addition, the expression levels of 13 genes involved in B. cinerea virulence and five genes involved in tomato immune response were altered by the SV treatment. These results indicate that SV inhibits B. cinerea by enhancing acetylation of histone H3 and modifying gene transcription. Thus, SV is an effective, safe, potential antifungal agent for control of both pre- and postharvest losses caused by B. cinerea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call