Abstract

Triads and transverse tubules isolated from mammalian skeletal muscle actively accumulated Na+ in the presence of K+ and Mg-ATP. Active Na+ transport exhibited a fast single-exponential phase, lasting 2 min, followed by slower linear uptake that continued for 10 minutes. Valinomycin stimulated Na+ uptake, suggesting it decreased a pump-generated membrane potential gradient (Vm) that prevented further Na+ accumulation. At the end of the fast uptake phase transverse tubule vesicles incubated in 30 mM external [Na+] attained a ratio [Na+]in/[Na+]out=13.4. From this ratio and the transverse tubule volume of 0.35 microl/mg protein measured in this work, [Na+]in=400 mM was calculated. Determinations of active K+ transport in triads, using 86Rb+ as tracer, showed a 30% decrease in vesicular 86Rb+ content two minutes after initiating the reaction, followed by a slower uptake phase during which vesicles regained their initial 86Rb+ content after 10 minutes. Transverse tubule volume increase during active Na+ transport-as shown by light scattering changes of isolated vesicles--presumably accounted for the secondary Na+ and 86Rb+ uptake phases. These combined results indicate that isolated triads have highly sealed transverse tubules that can be polarized effectively by the Na+ pump through the generation of significant Na+ gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.