Abstract

Gravimetric and sodium transport characteristics of lungs from BIO 14.6 (dystrophic) hamsters were compared with those of lungs from golden Syrian (normal) hamsters at 30 and 150 days of age. Isolated perfused lungs were used to determine lung permeability and fluid balance differences between normal and dystrophic animals at both ages. Apparent permeability-surface area products for air space-to-vascular space sodium, sucrose, and fluorescein isothiocyanate-labeled dextran fluxes were compared in the four groups of hamsters. Morphometric analysis of fixed lungs of representative hamsters from each group was also performed. Dystrophic hamsters exhibited higher lung wet-to-dry weight ratios than normal hamsters at both ages. Lungs from dystrophic hamsters were less sensitive to inhibition of sodium transport by amiloride than lungs from age-matched normal hamsters. Dystrophic hamster lungs had higher absolute permeabilities of the passively transported solutes, lower permeability values for sodium, and only one-half of the amiloride-sensitive sodium transport of lungs from age-matched normal hamsters. Differences in lung fluid balance between dystrophic and normal hamsters may be related to differences in sodium clearance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call