Abstract

AimDoxorubicin (DOX) induces dose-dependent cardiotoxicity due to reactive oxygen species (ROS)-mediated oxidative stress and subsequent apoptosis of cardiomyocytes. We aimed to assess whether sodium thiosulfate (STS), which has antioxidant and antiapoptotic properties, exerts cardioprotective effects on DOX-induced cardiomyopathy. Main methodsMale C57BL/6N mice were divided into four groups, control, DOX, STS, and DOX + STS, and administered DOX (20 or 30 mg/kg) or normal saline intraperitoneally, followed by an injection of STS (2 g/kg) or normal saline 4 h later. Key findingsThe DOX group showed a poorer 6-day survival and decreased cardiac function than the DOX + STS group. The DOX group showed a marked increase in the plasma creatine kinase isoenzyme myocardial band (CK-MB) and lactate dehydrogenase (LDH) levels 10 h after DOX injection, while the DOX + STS group showed suppression of DOX-induced elevation of CK-MB and LDH levels. The DOX group showed increased 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the heart, whereas the DOX + STS group showed increased catalase and superoxide dismutase (SOD) activities and decreased 8-OHdG levels in the heart compared with DOX group, suggesting that STS reduces DOX-induced DNA damage by improving antioxidant enzymes activities in cardiomyocytes. Additionally, the DOX + STS group showed attenuation of cleaved caspase-3 and DNA fragmentation in cardiomyocytes compared with the DOX group, suggesting that STS suppresses DOX-induced apoptosis in cardiomyocytes. SignificanceSTS exerts cardioprotective effects against DOX-induced cardiac dysfunction partly by improving antioxidant defense and suppressing apoptosis, indicating the therapeutic potential of STS against DOX-induced cardiomyopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call