Abstract

Atopic dermatitis (AD) is a common disease with a considerable impact on the patient's quality of life and limited treatment options. Sodium thiosulfate (STS) is a traditional medicine used in the rescue of cyanide poisoning, and some pruritus dermatosis. However, the exact efficacy and mechanism of its application on AD are not clear. In this work, comparing to other traditional therapy, STS was found to effectively improve the severity of skin lesions and the quality of life in AD patients with a dose-dependent manner. Mechanically, STS downregulated the expression of IL-4, IL-13, IgE in the serum of AD patients, as well as reduce the concentration of eosinophils. Furthermore, in the AD-like mice model triggered by ovalbumin (OVA) and calcitriol, STS was found to reduce the epidermal thickness, scratching times, and the infiltration of dermal inflammatory cells in AD mice, as well as the reactive oxygen species (ROS) production and the expression levels of inflammatory cytokines in the skin tissue. In HacaT cells, STS inhibited the accumulation of ROS and activation of NLRP3 inflammasome and its downstream IL-1ÎČ expression. Therefore, this study revealed that STS plays an important therapeutic role in AD, and the mechanism may be that STS inhibits the activation of NLRP3 inflammasome and the subsequent release of inflammatory cytokines. Thus, the role of STS in treating AD was clarified and the possible molecular mechanism was revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call