Abstract
Metal nanomaterials hold great potential and play an important role in consumer products. However, the increasing use of nanomaterials has raised concern over inadvertent exposure and potential risks for human health and the environment. Henceforth, in vivo testing of nanoparticles and protection against its toxicity is required. Using rat as an animal model, effect of sodium selenite (Se), an essential trace element, on rat testes exposed to silver nanoparticles (AgNPs) was evaluated. Male rats were treated with AgNPs (5mg/kg/b.w) i/p or Se (0.2mg/kg/b.w) by gavage. AgNP administration decreased Glutathione (GSH) levels and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and increased levels of malondialdehyde (MDA) and expression of interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). However, treatment with Se increased GSH levels and activities of SOD, CAT, and GPx compared with AgNP-treated group and decreased the level of MDA and inflammatory biomarkers significantly (p<0.05) as compared with AgNP-treated group. Light microscopic analyses also revealed that AgNP induced histopathological changes in testes tissue. Further, protection by Se on biochemical results was confirmed by alleviation of the histopathological changes in the tissue. Results show the adverse effects of AgNPs on the male reproductive tract, particularly spermatogenesis, and suggest that Se possesses significant potential in reducing AgNP-induced testicular toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.