Abstract

As a trace element that maintains homeostasis in human body, selenium has significant anti-tumor activity. However, its exact molecular mechanism remains to be elucidated. Sodium selenite (SSe) is the most widely-distributed inorganic selenium in nature. In this study, we selected SSe as the research object to explore its anti-tumor mechanism in lung cancer. In vitro experiment showed that SSe could inhibit the activation of NF-κB signaling pathway, knowing that NF-κB is an important intracellular nuclear transcription factor that regulates the expression of pyruvate dehydrogenase kinase 1 (PDK1), a key energy metabolism switch affecting the survival status of the whole cell.At the same time, Bay11–7082(NF-κB signaling pathway inhibitors) and SSe resulted in phosphorylation of p65 and IκBα, decreased expression of PDK1 and Bcl-2,and increased expression of Bax in lung cancer cells. Our further study demonstrated that the reduction of PDK1 activity inhibited lactate secretion, reduced mitochondrial membrane potential, caused the release of Cytochrome C (Cyto C), activated mitochondrial respiration, and promoted the apoptosis of lung cancer cells. The in vivo experiment revealed that SSe inhibited the activation of NF-κB signaling pathway, decreased the expression of PDK1, and induced lung cancer cell proliferation and apoptosis. All these findings indicated that SSe promoted lung cancer cell apoptosis by inhibiting the activation of NF-κB signaling pathway, down-regulating PDK1 and activating mitochondrial apoptosis pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.