Abstract

The water absorption measurements of a novel superabsorbent anionic hydrogel, H-Na-PCMSA-g-PAN, has been reported first time in water with a poor conductivity, 0.15 M saline (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) solutions at various times. The hydrogel has been prepared by the saponification of the graft copolymer, Na-PCMSA-g-PAN (%G = 316.53, %GE = 99.31). Results indicated that as compared to the swelling capacity values evaluated in water with a poor conductivity, the ability of the hydrogel to swell in various saline solutions with the same concentration is significantly reduced at all different durations. The swelling tends to be Na+ > Ca2+ > Al3+ at the same saline concentration in the solution. Studies of the absorbency in various aqueous saline (NaCl) solutions also revealed that the swelling capacity decreased as the ionic strength of the swelling medium rose, which is consistent with the experimental results and Flory's equation. Furthermore, the experimental results strongly suggested that second-order kinetics governs the swelling process of the hydrogel in various swelling media. The swelling characteristics and equilibrium water contents for the hydrogel in various swelling media have also been researched. The hydrogel samples have been successfully characterized by FTIR to show the change in chemical environment to COO- and CONH2 groups after swelling in different swelling media. The samples have also been characterized by SEM technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.