Abstract

Cyclic nucleotide PDEs (phosphodiesterases) regulate cellular levels of cAMP and cGMP by controlling the rate of degradation. Several mammalian PDE isoforms possess N-terminal GAF (found in cGMP PDEs, Anabaena adenylate cyclases and Escherichia coli FhlA; where FhlA is formate hydrogen lyase transcriptional activator) domains that bind cyclic nucleotides. Similarly, the CyaB1 and CyaB2 ACs (adenylate cyclases) of the cyanobacterium Anabaena PCC 7120 bind cAMP through one (CyaB1) or two (CyaB2) N-terminal GAF domains and mediate autoregulation of the AC domain. Sodium inhibits the activity of CyaB1, CyaB2 and mammalian PDE2A in vitro through modulation of GAF domain function. Furthermore, genetic ablation of cyaB1 and cyaB2 gives rise to Anabaena strains defective in homoeostasis at limiting sodium. Sodium regulation of GAF domain function has therefore been conserved since the eukaryotic/prokaryotic divergence. The GAF domain is the first identified protein domain to directly sense and signal changes in environmental sodium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.