Abstract
AimsSodium propionate (SP) has been reported to possess an anti-inflammatory and anti-apoptotic potential by inhibiting certain signaling pathways and helps in reducing the pathological damages of the mammary gland. However, the effects of sodium propionate on attenuating Lipopolysaccharide (LPS)-induced inflammatory condition and cell damage in bovine mammary epithelial cells (bMECs) are not comprehensively studied yet. Therefore, the aim of the current investigation was to evaluate the protective effects of sodium propionate on LPS-induced inflammatory conditions and to clarify the possible underlying molecular mechanism in bMECs. Main methodsThe effects of increasing doses of SP on LPS-induced inflammation, oxidative stress and apoptosis was studied in vitro. Furthermore, the underlying protective mechanisms of SP on LPS-stimulated bMECs was investigated under different experimental conditions. Key findingsThe results reveled that increased inflammatory cytokines, chemokines and those of tight junction's mRNA expression was significantly attenuated dose-dependently by propionate. Biochemical analysis revealed that propionate pretreatment modulated the LPS-induced intercellular reactive oxygen species (ROS) accumulation, oxidative and antioxidant factors and apoptosis rate. Furthermore, we investigated that the LPS activated nuclear factor-kB (NF-kB), caspase/Bax apoptotic pathways and Histone deacetylases (HDAC) was significantly attenuated by propionate in bMECs. SignificanceOur results suggest that sodium propionate is a potent agent for ameliorating LPS-mediated cellular disruption and limiting detrimental inflammatory responses, partly via maintaining blood milk barrier integrity, inhibiting HDAC activity and NF-kB signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.