Abstract

The effects of [Na(+)] or [K(+)] on Na, K-ATPase activity of FW-acclimated and SW-acclimated tilapia, puffer and milkfish were examined in gill homogenates. [Na(+)] or [K(+)] stimulated Na, K-ATPase hydrolyzing ATP in all experimental groups. ATP hydrolysis stimulated by [Na(+)] or [K(+)] followed Michaelian-Menten kinetics. Km values for [K(+)] (i.e., Km(K)), were lower in SW- than FW-acclimated tilapia and puffer fishes (tilapia: 8.69+/-0.22 vs. 11.93+/-1.17 mM; puffer: 13.51+/-1.39 vs. 30.52+/-2.66 mM). Km values for [Na(+)] (i.e., Km(Na)), were lower in FW- than SW-acclimated milkfish (3.76+/-0.54 vs. 7.55+/-1.08 mM). These data suggest that [K(+)] stimulates ATP hydrolysis to rates higher in SW- than FW-acclimated tilapia and puffer fishes, while [Na(+)] stimulated ATP hydrolysis at rates higher in FW- than SW-acclimated milkfish. This is the first demonstration that Na, K-ATPase activity of euryhaline tilapia, puffer, and milkfish modulated by [Na(+)] or [K(+)] have different effects between FW- and SW-acclimated groups. Such responses as changes in properties of branchial Na, K-ATPase may contribute to improve the osmoregulatory capacity of tilapia, puffer and milkfish to acclimate in seawater and fresh water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call