Abstract

Sodium-dependent Cl−/HCO3 − exchanger acts as a chloride (Cl−) efflux in lymphocytes. Its functional characterization had been described when Cl− efflux was measured upon substituting extracellular sodium (Na+) by N-methyl-D-glucamine (NMDG). For Na+ and Cl− substitution, we have used D-mannitol or NMDG. Thymocytes of male Wistar rats aged 7–9 weeks were used and intracellular Cl− was measured by spectrofluorimetry using MQAE dye in bicarbonate buffers. Chloride efflux was measured in a Cl−-free buffer (Cl− substituted with isethionate acid) and in Na+ and Cl−-free buffer with D-mannitol or with NMDG. The data have shown that Cl− efflux is mediated in the absence of Na+ in a solution containing D-mannitol and is inhibited by H2DIDS. Mathematical modelling has shown that Cl− efflux mathematical model parameters (relative membrane permeability, relative rate of exchanger transition, and exchanger efficacy) were the same in control and in the medium in which Na+ had been substituted by D-mannitol. The net Cl− efflux was completely blocked in the NMDG buffer. The same blockage of Cl− efflux was caused by H2DIDS. The study results allow concluding that Na+ is not required for Cl− efflux via Cl−/HCO3 − exchanger. NMDG in buffers cannot be used for substituting Na+ because NMDG inhibits the exchanger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.