Abstract

We have studied the nuclear magnetic resonance (NMR) relaxation behavior, and thus the dynamic properties, of the sodium ion in the vitreous body at different temperatures. The 23Na NMR spectrum exhibits a resonance, the intensity of which accounts for an ion visibility of 100%. The 23Na longitudinal and transverse relaxation times, at all temperatures but the highest, present two components, suggesting that the sodium ions are present in two states of different mobility, whose populations are in slow exchange on the NMR time scale. The correlation times and quadrupole coupling constants for the two sodium pools have been derived. The faster relaxation of a fraction of the vitreal sodium has tentatively been ascribed to the influence of the macromolecular framework of the vitreous body. The reported information may be of use for the understanding of the diagnostic applications of 23Na magnetic resonance imaging of the ocular structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.