Abstract

SummaryPurpose: We evaluated the DNA damaging potential of Auger electrons emitted in the decay of 99mTc compared to α-particles of 211At. Material and methods: The impact of 99mTc and 211At was monitored in a NIS-expressing rat thyroid cell model PC Cl3 with varying, yet defined intra- and extracellular radionuclide distribution (using ± perchlorate). The radiotoxicity of 99mTc and 211At was studied by the comet assay under neutral and alkaline conditions and colony formation. Results: In the presence of perchlorate, the radioactivity yielding 37 % cellular survival, A37, was estimated to be (0.27 ± 0.02) MBq/ml and (450 ± 30) MBq/ml for 211At and 99mTc, respectively. In absence of perchlorate, cellular radiotracer uptake was similar for both radionuclides (2.2 %, 2.7 %), yet the A37 was reduced by 82% for the α-emitter and by 95 % for 99mTc. Cellular dose increased by a factor of 5 (211At) and 38 (99mTc). Comet assays revealed an increased DNA damage after intracellular uptake of both radiotracers. Conclusions: The data indicate damage to the cell to occur from absorbed dose without recognizable contribution from intracellular heterogeneity of radionuclide distribution. Comet assay under alkaline and neutral conditions did not reveal any shift to more complex DNA damage after radionuclide uptake. Cellular uptake of 99mTc and 211At increased cellular dose and reduced clonogenic survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call