Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. Sodium iodate (NaIO3), a stable oxidizing agent, has been injected to establish a reproducible model of oxidative stress-induced RPE and photoreceptor death. The aim of our study was to evaluate the morphological and molecular changes of retina and retinal pigment epithelium (RPE)-choroid in NaIO3-treated mouse using multimodal fundus imaging and label-free quantitative proteomics analysis. Here, we found that following NaIO3 injection, retinal degeneration was evident. Fundus photographs showed numerous scattered yellow-white speckled deposits. Optical coherence tomography (OCT) images indicated disruption of the retinal layers, damage of the RPE layer and accumulation of hyper-reflective matter in multiple layers of the outer retina. Widespread foci of a high fundus autofluorescence (FAF) signal were noticed. Fundus fluorescein angiography (FFA) revealed diffuse intense transmitted fluorescence mixed with scattered spot-like blocked fluorescence. Indocyanine green angiography (ICGA) presented punctate hyperfluorescence. Due to the atrophy of the RPE and Bruch's membrane and choroidal capillary complex, the larger choroidal vessels become more prominent in ICGA and optical coherence tomography angiography (OCTA). Transmission electron microscope (TEM) illustrated abnormal material accumulation and damaged mitochondria. Bioinformatics analysis of proteomics revealed that the differentially expressed proteins participated in diverse biological processes, encompassing phototransduction, NOD-like receptor signaling pathway, phagosome, necroptosis, and cell adhesion molecules. In conclusion, by multimodal imaging, we described the phenotype of NaIO3-treated mouse model mimicking oxidative stress-induced RPE and photoreceptor death in detail. In addition, proteomics analysis identified differentially expressed proteins and significant enrichment pathways, providing insights for future research, although the exact mechanism of oxidative stress-induced RPE and photoreceptor death remains incompletely understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.