Abstract

Observations of sodium D-line emission from Io and the magnetosphere of Jupiter are reported. A disk-shaped cloud of sodium is found to exist in the Jovian magnetosphere with an inner edge at about 4Rч and an outer edge at about 10Rч. The gravitational scale height above the equatorial plane is a few Jovian radii. The data are interpreted in terms of a sputtering model, in which the sodium required to maintain the cloud is sputtered off the surface of Io by trapped energetic radiation-belt protons. Conditions on the atmospheric density are obtained. The Keplerian orbits attainable by such escaping sputtered atoms can provide the observed spatial distribution. The required 500-keV proton flux required to provide the 1–10 keV protons which will sputter the sodium at the surface of Io is consistent with the limiting trapped flux determined by ion-cyclotron turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.