Abstract
Signal-to-noise ratio (SNR) is a major challenge to sodium magnetic resonance imaging. Phased array coils have been shown significantly improving SNR in proton imaging over volume coils. This study investigates SNR advantage of a 15-channel array head coil (birdcage volume coil for transmit/receive and 15-channel array insert for receive-only) in sodium imaging at 7 T. Phantoms and healthy human brains were scanned on a whole-body 7 T magnetic resonance imaging scanner using a customer-developed pulse sequence with the twisted projection imaging trajectory. Noise-only images were acquired with blanked radiofrequency excitations for noise measurement on a pixel basis. SNR was calculated on the root of sum-of-squares images. When compared with the volume coil, the 15-channel array produced SNR more than doubled at the periphery and slightly increased at the center of the phantoms and human brains. Decorrelation of noise across channels of the array coil extended the SNR-doubled region into deep area of the brain. The spatial modulation of element sensitivities on the sum-of-squares combined image was removed by performing self-calibrated sensitivity encoding parallel image reconstruction and uniform image intensity across entire field of view was attained. The 15-channel array coil is an efficient tool to substantially improve SNR in sodium imaging on human brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.