Abstract
This study investigated the effect of sodium humate supplementation on changes in the intestinal microbiome, intestinal short-chain fatty acids production, and trace element absorption in older laying hens, with consequent effects on egg performance and shell quality. We used the same hens as their own control; a total of 720 laying hens aged 422 days were randomly divided into three replicates, with the CON group fed a commercial diet at 422–441 days of age and the HANa group fed a commercial diet supplemented with 0.05% sodium humate at 442–461 days of age. Compared with the CON group, in the HANa group, Bacteroidetes and Actinobacteria were significantly increased, whereas, Firmicutes was significantly decreased. Further, Veillonella, Enterococcus, Lactobacillus, and Turricibacter significantly decreased, and Peptoniphilus, Helcococcus, GW-34, Psychrobacter, Anaerococcus, Corynebacterium, Facklamia, Trichococcus, Gallicola, Clostridium, and Oscillospira were significantly increased. The results showed that sodium humate significantly altered the alpha and beta diversity and changed the structure of the intestinal microbiome. Acetic acid, isovaleric acid, and isobutyric acid, among short-chain fatty acids were significantly increased in the HANa group, whereas trace elements such as Mn, Zn, and Fe were significantly reduced. The eggshell strength and ultrastructure were significantly altered. In this study, sodium humate was found to alter the intestinal microbiome structure of aged hens, change the production of short-chain fatty acids, and promote the absorption of trace elements to keep aged hens from experiencing a decrease in egg production performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.