Abstract

The sodium flux ratio of the amiloride-sensitive Na+ channel in the apical membrane of in vitro Rana catesbeiana skin has been evaluated at different sodium concentrations and membrane potentials in sulfate Ringer solution. Amiloride-sensitive unidirectional influxes and effluxes were determined as the difference between bidirectional 22Na and 24Na fluxes simultaneously measured in the absence and presence of 10(-4) M amiloride in the external bathing solution. Amiloride-sensitive Na+ effluxes were induced by incorporation of cation-selective ionophores (amphotericin B or nystatin) into the normally Na+-impermeable basolateral membrane. Apical membrane potentials (Va) were measured with intracellular microelectrodes. We conclude that since the flux ratio exponent, n', is very close to 1, sodium movement through this channel can be explained by a free-diffusion model in which ions move independently. This result, however, does not necessarily preclude the possibility that this transport channel may contain one or more ion binding sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call