Abstract

The structural and elastic mechanical properties of xNa2O–(100-x)SiO2 sodium silicate glasses were computed and analyzed at different scales, using atomistic simulations and coarse-grain methods based on physical principles. The numerical simulations were performed on large samples (~1003Å3 box size with ~70000 atoms), and the results were compared to experimental measurements. It was shown that the cutoff in the non-Coulombic part of the empirical interactions affects the pressure/density relations. Therefore, this value was tuned to achieve the experimental density at ambient pressure. As a result we obtained realistic mechanical and structural properties as well. With this model, we analyzed the elastic response of the samples for different sodium content. We showed, that experimentally measured elastic moduli result from a succession of micro-plastic rearrangements that must be taken into account when calculating microscopic elastic moduli. Moreover, we investigated the size dependence of the elastic moduli, and we showed a strong connection between small scale heterogeneous elasticity and sodium repartition. The transition from small scale to large scale description of elasticity should involve an accurate description of the spatial organization of sodium ions inside the silica network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.