Abstract
Sodium-doped carbon nitride nanotubes (Na x -CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ > 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h−1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Li x -CNNTs and K x -CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Na x -CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Na x -CNNTs is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.