Abstract

Four different polymer/buffer systems (a commercial polymer from Bio-Rad, dextran, poly(ethylene oxide) (PEO), and non-crosslinked poly(acrylamide)) were evaluated for use in sodium dodecyl sulfate capillary electrophoresis (SDS-CE) separations of wheat proteins. These polymers were chosen on the basis of published reports of their use in uncoated or dynamically coated capillaries. Each polymer was optimized (where possible) by manipulating the polymer concentration and buffer concentration, and through the use of organic modifiers such as methanol and ethylene glycol. The addition of ethylene glycol to the separation buffer was found to improve the resolution of the separations, despite dilution of the sieving polymers. When PEO was used as the sieving polymer, however, no improvement was seen when ethylene glycol was added. Despite producing similar separations of molecular mass markers, the polymers did not all produce similar wheat protein separations. The commercial reagent and dextran produced similar separations, while the poly(acrylamide) produced faster separations than either. The poly(acrylamide) displayed much lower resolution in the 40-60 kDa range than the other polymers, though this polymer was able to separate the high molecular mass glutenin subunits (HMM-GS) without the use of added organic solvent. PEO produced much different wheat protein separations than the other polymers, despite similar separations of the molecular weight markers. This may have been due to interaction between the wheat proteins and PEO. Each polymer system also predicted different molecular masses of the various wheat protein fractions separated, with the PEO and poly(acrylamide) grossly overestimating the masses for all protein classes. This could have been due to protein-polymer interactions. Further work was done with the Bio-Rad buffer modified by the addition of ethylene glycol. Several different wheat protein fractions as well as proteins extracted from several different cultivars were separated with this buffer and compared. SDS-CE separations were also compared to SDS-poly(acrylamide) gel electrophoresis (PAGE) and several differences in the migration pattern of HMM-GS were noted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.