Abstract

Although citrus trees are considered relatively salt-sensitive, there are consistent differences in Na+ and Cl– tolerance among different citrus rootstocks. We grew uniform seedlings of rough lemon (RL) and the more Na+-tolerant Swingle citrumelo (SC) with and without 50 mm NaCl for 42 days. Salinity reduced leaf chlorophyll and plant transpiration rate (Ep) more in RL than SC. Confocal laser scanning analyses using the Na+-specific cell-permeant fluorescent probe CoroNa-Red revealed a higher capacity for Na+ sequestration in root tissue vacuoles of SC than in RL roots and that cell walls within the stele acted as Na+ traps. In leaves, however, RL had significantly higher Na+-dependent fluorescence than SC. Thus, the sequestration of Na+ in root tissue vacuoles and its immobilization by cell walls were key contributing mechanisms enabling SC leaves to maintain lower levels of Na+ than RL leaves. Examination of intracellular distribution of CoroNa-Green fluorescence in SC root protoplasts verified a vacuolar localization for Na+ in addition to the presence of a 2- to 6-μm unidentified endosomal compartment containing significantly higher Na+ concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call