Abstract
ADEQUATE membrane transport of L-cysteine is necessary for red blood cell (RBC) survival, as this amino acid is essential for glutathione (GSH) synthesis and thus cell protection against oxidative damage. Thus, in sheep a genetically controlled L-cysteine transport defect leads to a reduced intracellular GSH concentration and shortened cell lifespan1–4. Human RBCs do not have the same amino acid transport system as sheep red blood cells (SRBC)5, the principal component being a high capacity, medium affinity system with a specificity broadly directed towards large neutral amino acids, the L-system of Christensen6. L-cysteine and its analogue L-α-amino-n-buty-rate are carried by the L-system in human RBCs, but with a low affinity7. Most experiments on amino acid transport in RBCs, particularly involving the L-system, have revealed substrate affinities with apparent Km values in the millimolar range, much higher than the physiological plasma levels of most amino acids. We have now investigated L-cysteine uptake in human RBCs over the concentration range 1–50 µm, as human plasma levels are around 20 µM8,9. As the early work of Yunis and Arimura10 has shown that glycine and L-alanine transport are partially Na-dependent, we have also investigated the effects of removing external Na on L-cysteine transport. We report here that human RBCs transport L-cysteine by a previously unidentified high affinity, low capacity, Na-dependent uptake mechanism. This system has a uniquely high affinity for its substrate and is the first Na-dependent transport mechanism to be kinetically characterised in mammalian erythrocytes. At physiological substrate concentrations it accounts for approximately half of the L-cysteine uptake into the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.