Abstract

CRIEPI and Toshiba Corp. have been exploring to realize a small-sized nuclear reactor for the needs of dispersed energy source and multi-purpose reactor. A conceptual design of 4S ( Super- Safe, Small and Simple) reactor is proposed to meet the following design requirements: (1) All temperature feedback reactivity coefficients including whole core sodium void reactivity are negative; (2) The core integrity is secured against all anticipated transient without reactor scram; (3) No emergency power nor active mitigating system is required; (4) The reactivity core lifetime is more than 10 years. The 4S reactor is a metallic fueled sodium cooled fast reactor. A target of an electrical output is 10–50 MW. A remarkable feature of 4S is that its reactivity is not controlled by neutron absorber rods but by neutron reflectors to cope with a long core lifetime and a negative coolant void reactivity. This study includes a design consideration of 4S. Design discussions are mainly focused on various core designs to meet above requirements. A tall core active height is adopted to gain long core lifetime. An averaged fuel burn-up is tried to be increased up to 100 GWd/ton from a point of economic view. The reference 4S designs are 10 MWe (30 years core lifetime) and 50 MWe (10 years core lifetime).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.