Abstract

The microbially induced carbonate precipitation (MICP) technique is widely used in soil heavy metal pollution control. Microbial mineralization involves extended mineralization times and slow crystallization rates. Thus, it is important to discover a method to accelerate mineralization. In this study, we selected six nucleating agents to screen and investigated the mineralization mechanism using polarized light microscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The results showed that sodium citrate removed 90.1% Pb better than traditional MICP and generated the highest amount of precipitation. Interestingly, due to the addition of sodium citrate (NaCit), the rate of crystallization increased and vaterite was stabilized. Moreover, we constructed a possible model to explain that NaCit increases the aggregation capacity of calcium ions during microbial mineralization to accelerate the formation of calcium carbonate (CaCO3). Thus, sodium citrate can increase the rate of MICP bioremediation, which is important for improving MICP efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call