Abstract

Using the Taylor-Couette geometry we experimentally investigate the effect of salt on drag reduction caused by bubbles present in the flow. We combine torque measurements with optical high-speed imaging to relate the bubble size to the drag experienced by the flow. Previous studies have shown that a small percentage of air (4%) can lead to dramatic drag reduction (40%). In contrast to previous laboratory experiments, which mainly used fresh water, we will vary the salinity fromthat of fresh water to the average salinity of ocean water. We find that the drag reduction is increasingly more inhibited for increasing salt concentrations, going from 40% for fresh water to just 15% for seawater. Salts present in the working fluid inhibit coalescence events, resulting in smaller bubbles in the flow and, with that, adecrease inthe drag reduction. Above a critical salinity, increasing the salinity has no further effect on thesize of bubbles in the flow and thus the drag experienced by the flow. Our new findings demonstrate the importance of sodium chloride on the bubbly drag reduction mechanism, and will further challenge naval architects to implement promising air lubrication systems on marine vessels. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call