Abstract

Recently, we have studied properties and structural features of the thermostable halotolerant alcohol dehydrogenase from archaeon Thermococcus sibiricus (TsAdh319). In the present work, the effect of sodium chloride on activity and thermostability was explored using circular dichroism, fluorescent spectroscopy, and differential scanning calorimetry. The activity of TsAdh319 increased in the presence of NaCl and remained at the elevated level up to 4 M of NaCl. Sodium chloride at molar concentrations reduced the optimal reaction temperature, increased both Michaelis constant (K m) and k cat values for the substrates tested, decreased affinity for the coenzyme, and stoichiometry of coenzyme binding. No changes were revealed in a secondary or quaternary structure of the protein in the presence of NaCl up to 90 °C. According to differential scanning calorimetry, the irreversible unfolding started around 90 °C, the addition of NaCl decreased T m from 104.2 to 102.2 °C, and reduced ΔH from 438 to 348 kJ/mol. Kinetic studies revealed positive effect of NaCl on the TsAdh319 thermostability. The results are interpreted in regard to TsAdh319 structural data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.