Abstract
Pancreatic cancer is characterised by a highly malignant phenotype with a marked resistance to conventional therapies and to apoptotic activators. Here, we demonstrate that sodium butyrate (NaBt), an inhibitor of histone deacetylases, sensitises human pancreatic cancer cell lines to both mitochondria- and Fas-mediated apoptosis. The analysis of anti-apoptotic and pro-apoptotic members of the Bcl-2 family in untreated pancreatic cancer cell lines shows a generalised low expression of Bcl-2 and a strong expression of Bcl-x L. NaBt treatment results in a marked down-regulation of Bcl-x L expression, mitochondrial membrane depolarization, cytochrome c release from mitochondria, activation of caspase-9 and -3 and apoptosis induction. Furthermore, NaBt sensitises pancreatic cancer cells to Fas-mediated apoptosis as well. In fact, the combined treatment with NaBt and the agonistic antibody anti-Fas (CH11) is able to induce apoptosis at an early time, in which neither NaBt nor CH11 alone induce apoptosis. Down-regulation of FLIP and activation of caspase-8 allow apoptosis to occur. These findings suggest that sodium butyrate could represent a good candidate for the development of new therapeutic strategies aimed at improving chemotherapy and immunotherapy in pancreatic cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.