Abstract

Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ) tract within the androgen receptor. Unifying mechanisms have been implicated in the pathogenesis of polyQ-dependent neurodegenerative diseases including SBMA, Huntington disease and spinocerebellar ataxias. It has been suggested that mutant protein containing polyQ inhibits histone acetyltransferase activity, resulting in transcriptional dysfunction and subsequent neuronal dysfunction. Histone deacetylase (HDAC) inhibitors alleviate neurological phenotypes in fly and mouse models of polyQ disease, although the therapeutic effect is limited by the toxicity of these compounds. We studied the therapeutic effects of sodium butyrate (SB), an HDAC inhibitor, in a transgenic mouse model of SBMA. Oral administration of SB ameliorated neurological phenotypes as well as increased acetylation of nuclear histone in neural tissues. These therapeutic effects, however, were seen only within a narrow range of SB dosage. Our results indicate that SB is a possible therapeutic agent for SBMA and other polyQ diseases, although an appropriate dose should be determined for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.