Abstract
BackgroundBacterial keratitis is a common cause of blindness. Antibiotic treatment leads to the rapid release of lipopolysaccharide (LPS), which can activate corneal fibroblasts and cause persistent and excessive inflammatory responses. The anti-inflammatory drugs currently used to treat keratitis have serious side effects. Therefore, the ability of sodium butyrate (NaB), which can suppress the production of proinflammatory cytokines and promote the production of anti-inflammatory cytokines, to ameliorate keratitis was assessed in the present study. MethodsThe effect of NaB on the viability of primary human corneal fibroblasts was assayed with a CCK-8 kit. Cell migration was assessed by an in vitro scratch assay. Cell phenotypes were assessed by Western blotting and immunofluorescence staining. An antibody array was used to measure the production of proinflammatory cytokines and chemokines. ResultsAt 0–1 mM, NaB had no significant effect on cell viability, promoted the expression of the keratocyte marker keratocan and inhibited the fibroblast marker vimentin. Inhibition of cell migration was observed in the wound healing assay. By targeting the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway, NaB decreased the levels of inflammation-related cytokines and chemokines whose expression was induced by LPS. ConclusionsNaB maintained the keratocyte phenotype, inhibited cell migration, and relieved LPS-induced inflammatory responses through the JAK/STAT signalling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.