Abstract

Metal binding affinities play a vital role in medicinal, biological, and industrial applications. In particular, metal cation-amino acid (AA) interactions contribute to protein stability such that analyzing analogous prototypical interactions is important. Here, we present a full description of the interactions of sodium cations (Na+) and six aliphatic amino acids (AA), where AA = glycine (Gly), alanine (Ala), homoalanine (hAla), valine (Val), leucine (Leu), and isoleucine (Ile). Experimentally, these interactions are evaluated using threshold collision-induced dissociation carried out in a guided ion beam tandem mass spectrometer, allowing for the determination of the kinetic-energy-dependent behavior of Na+-AA dissociation. Analysis of these dissociation cross sections, after accounting for multiple ion-molecule collisions, internal energy of reactant ions, and unimolecular decay rates, allows the determination of absolute Na+-AA bond dissociation energies (BDEs) in kJ/mol of Gly (164.0), Ala (166.9), hAla (167.9), Val (172.7), Leu (173.7), and Ile (174.6). These are favorably compared to quantum chemical calculations conducted at the B3LYP, B3P86, MP2(full), B3LYP-GD3BJ, and M06-2X levels of theory. Our combination of structural and energetic analyses provides information regarding the specific factors responsible for Na+ interactions with amino acids. Specifically, we find that the BDEs increase linearly with increasing polarizability of the amino acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.