Abstract

Although immunotherapy has a broad clinical application prospect, it is still hindered by low immune responses and immunosuppressive tumor microenvironment. Herein, a simple and drug-free inorganic nanomaterial, alkalescent sodium bicarbonate nanoparticles (NaHCO3 NPs), is prepared via a fast microemulsion method for amplified cancer immunotherapy. The obtained alkalescent NaHCO3 regulates lactic acid metabolism through acid-base neutralization so as to reverse the mildly acidic immunosuppressive tumor environment. Additionally, it can further release high amounts of Na+ ions inside tumor cells and induce a surge in intracellular osmolarity, and thus activate the pyroptosis pathway and immunogenic cell death (ICD), release damage-associated molecular patterns (DAMPs) and inflammatory factors, and improve immune responses. Collectively, NaHCO3 NPs observably inhibit primary/distal tumor growth and tumor metastasis through acid neutralization remitted immunosuppression and pyroptosis induced immune activation, showing an enhanced antitumor immunity efficiency. This work provides a new paradigm for lactic acid metabolism and pyroptosis mediated tumor treatment, which has a potential for application in clinical tumor immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call