Abstract

The kinetics of adsorption by sodium, ammonium, calcium and magnesium forms of zeolite Y from aqueous solutions containing 25% w/v of either one or an equimolar mixture of glucose (G) and fructose (F) have been studied batch-wise at 50 °C. The adsorption of aqueous pure G was fast, while that of aqueous pure F depended on the cationic form, approaching that of G on the Mg-Y, and slowing down in the sequence of Mg 2 + > NH 4 + > Ca 2 + > Na + of the cations. The adsorption behavior from solutions containing both G and F indicated significant hindering effects of F on G on Na-Y. Na-Y and Mg-Y did not exhibit rate-based selectivity, while Ca-Y an NH 4-Y adsorbed G faster than F. Addition of CaCl 2 to the mixture of Ca-Y and aqueous solution of G and F improved the separation, by hindering the adsorption of F. Addition of NH 4Cl to the mixture of the sugar solution and NH 4-Y, on the other hand, had a negative effect on the separation. NH 4-Y was found to be desorbing about 30% of the adsorbed sugars and this value was found to be around 50% for Ca-Y. Re-adsorption experiments resulted in similar or somewhat higher percentages of amounts adsorbed compared to adsorption on fresh samples. Both NH 4-Y and Ca-Y were found to be re-adsorbing around 50% of the sugars they adsorbed on fresh samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call