Abstract

Soft and wet hydrogels often struggle to achieve both toughness and high sensitivity simultaneously, limiting their usefulness in flexible devices. To tackle this challenge, we devised a strategy that combines supramolecular sodium alginate nanofibers, utilizing Zr4+ as physical crosslinkers, with surface crack engineering via the micro-phase separation of polyaniline, to create a physically and chemically dual crosslinked polyacrylamide (PAM)/sodium alginate (SA)/polyaniline (PANI) hydrogel with exceptional toughness and high sensitivity. Owing to the supramolecular sodium alginate nanofibers, the dual crosslinked hydrogel exhibited a tensile strength of 0.391 MPa, an elongation at break of 568.9 %, and a toughness of 1.020 MJ/m3. The in-situ polymerized polyaniline layer, confined within the dense network, introduced micro-cracks onto the hydrogel surface, resulting in a high gauge factor of 11.4 for the fabricated hydrogel. Furthermore, integrating this hydrogel into a triboelectric nanogenerator transformed it into self-powered sensors capable of detecting external forces and generating various signals without power supply. These findings suggest that the developed hydrogel held great potential in diverse fields, including human motion detection, human-machine interaction, and wearable electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.