Abstract

The effect of sodium alginate (SA) coating on the oil content and quality of fries was evaluated, and the inhibitory mechanism of SA on oil absorption was analyzed based on the water replacement theory. Compared to uncoated samples, the penetrated surface oil (PSO), structure oil (STO), and total oil (TO) contents, a*, and b* of coated fries decreased, whereas moisture content, L* and hardness increased with no significant difference revealed by sensory evaluation of all samples. The water contact angle of the films correlated negatively with the water content and hardness of the fries. In contrast, it correlated positively with PSO, STO, and TO contents. The TO content of fries with 1 % SA film which had a compact microstructure, was the lowest, reduced by 52.5 % compared to the control sample. SA coating reduces the pores and roughness on the fries' surface, which inhibits the oil from penetrating into the samples. SA coating decreased the T21, T22, and pores of the starch, and increased the P2b, P21, relative crystallinity, and ΔH significantly (P < 0.05). Therefore, SA coating inhibits the oil absorption in fries by reducing water evaporation which is attributed to the increase in double helices and crystallinity of starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call