Abstract
Important limitations in the application of light metal hydrides for hydrogen storage are slow kinetics and poor reversibility. To alleviate these problems doping and ball-milling are commonly applied, for NaAlH 4 leading to particle sizes down to 150 nm. By wet-chemical synthesis we have prepared carbon nanofiber-supported NaAlH 4 with discrete particle size ranges of 1-10 microm, 19-30 nm, and 2-10 nm. The hydrogen desorption temperatures and activation energies decreased from 186 degrees C and 116 kJ.mol (-1) for the largest particles to 70 degrees C and 58 kJ.mol (-1) for the smallest particles. In addition, decreasing particle sizes lowered the pressures needed for reloading. This reported size-performance correlation for NaAlH 4 may guide hydrogen storage research for a wide range of nanostructured light (metal) hydrides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.