Abstract

ObjectiveHepatic lipid dysregulation with consequent lipotoxicity remains critical in the progression of non-alcoholic fatty liver disease, a rising prevalent complication of diabetes mellitus particularly type 2 diabetes. Diabetes-associated hepatic complications are among the leading causes of liver-related morbidity and mortality worldwide. Short chain fatty acids (SCFAs) have been demonstrated to regulate glycemic metabolism but its effect on diabetes-driven hepatic perturbation is unknown. This study is therefore designed to investigate the effect of SCFAs, acetate on diabetes-characterised hepatic lipotoxicity, and plausible involvement of histone deacetylase (HDAC) activity. MethodsAdult male Wistar rats (230−260 g) were allotted into groups (n = 6/group) namely: control (vehicle; p.o.), sodium acetate (SAT)-treated (200 mg/kg), diabetic with/without SAT groups. Diabetes was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide 110 mg/kg. ResultsData from diabetic animals showed increased fasting glycemia and insulinemia, decreased insulin sensitivity and body weight with increased relative hepatic mass. It also revealed increased hepatic lipid, serum/hepatic malondialdehyde, tissue necrosis factor-α, uric acid, aspartate transaminase, alanine aminotransferase and decreased glutathione content with elevated hepatic HDAC. Histologically, the hepatic tissue was characterised with disrupted architecture, inflammation of central vein and foci of periportal and sinusoidal cellular infiltration. However, these alterations were attenuated by sodium acetate. ConclusionThe study demonstrates that diabetes mellitus drives hepatic lipotoxicity, characterised with lipid accumulation, excessive lipid peroxidation, pro-inflammation, depleted glutathione content and accompanied by increased HDAC activity. Besides, the study suggests that acetate ameliorates diabetes-associated hepatic lipotoxicity through HDAC suppression and enhancement of insulin sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call