Abstract

AbstractLong term galvanostatic charge/discharge cycling of oxygen deficient, carburized and self‐organized titanium dioxide (TiO2) nanotubes (NTs) in sodium ion (Na) batteries (SIBs) are subject to a significant self‐improving charge storage behavior. Surface reactions upon sodiation of carburized NTs form acicular surface films that can be reversibly cycled. We show that, alongside organic species from the decomposition of the electrolyte, mainly inorganic compounds, such as Na2O2 and Na2CO3, are the main constituents. These components possess a characteristic acicular morphology. Na2O2 is found to form upon sodiation and converted to NaO2 upon desodiation. This, in combination with its pseudo‐capacitive charge storage characteristics, explains the excellent rate capability measured for TiO2‐x‐C NTs. The observed high reversibility of this surface chemistry is also essential for the fast kinetics and the high capacity retention found in the system. Our findings point to a more general Na‐ion storage mechanism, that is potentially relevant to other transition metal oxides also.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.