Abstract

Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase-1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O(2)(*-)) to H(2)O(2). Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase-dependent (Nox-dependent) O(2)(*-) production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H(2)O(2) uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O(2)(*-) production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.