Abstract

IntroductionObesity is usually triggered by a nutrient overload that favors adipocyte hypertrophy and increases the number of pro-inflammatory cells and mediators into adipose tissue. These mediators may be regulated by suppressors of cytokine signaling (SOCS), such as SOCS2, which is involved in the regulation of the inflammatory response of many diseases, but its role in obesity is not yet known. We aimed to investigate the role of SOCS2 in metabolic and inflammatory dysfunction induced by a high-refined carbohydrate-containing diet (HC). Material and methodsMale C57BL/6 wild type (WT) and SOCS2 deficient (SOCS2−/−) mice were fed chow or an HC diet for 8 weeks. ResultsIn general, SOCS2 deficient mice, independent of the diet, showed higher adipose tissue mass compared with their WT counterparts that were associated with decreased lipogenesis rate in adipose tissue, lipolysis in adipocyte culture and energy expenditure. An anti-inflammatory profile was observed in adipose tissue of SOCS2−/− by reduced secretion of cytokines, such as TNF and IL-6, and increased M2-like macrophages and regulatory T cells compared with WT mice. Also, SOCS2 deficiency reduced the differentiation/expansion of pro-inflammatory cells in the spleen but increased Th2 and Treg cells compared with their WT counterparts. ConclusionThe SOCS2 protein is an important modulator of obesity that regulates the metabolic pathways related to adipocyte size. Additionally, SOCS2 is an inflammatory regulator that appears to be essential for controlling the release of cytokines and the differentiation/recruitment of cells into adipose tissue during the development of obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.