Abstract

Recent detailed genomic analysis of mycosis fungoides (MF) identified suppressor of cytokine signaling 1 (SOCS1), an inhibitor of JAK/STAT signaling, as one of the frequently deleted tumor suppressors in MF, and one-copy deletion of SOCS1 was confirmed in early-stage MF lesions. To better understand the functional role of SOCS1 in the genesis of MF, we used a genetically engineered mouse model emulating heterozygous SOCS1 loss in skin resident CD4+ T cells. In these mice an experimentally induced contact-allergic reaction was maintained for 20 weeks. Ten weeks after discontinuing contact-allergic challenges, only the skin with locally one-copy deletion of Socs1 in CD4+ T cells still showed high numbers of CD3+/CD4+ Socs1 k.o. cells in the dermis (p < 0.0001) with prevalent Stat3 activation (p <0.001). And in one out of 9 mice, this had progressed to far more dramatic increases, including the thickened epidermis, and with an explosive growth of Socs1 k.o. T cells in circulation; indicative of cutaneous lymphoma. Hence, we show that Socs1 mono-allelic loss in CD4+ T cells locally in protractedly inflamed skin results in autonomous skin inflammation with features of early-stage MF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call