Abstract

The maintenance of soil organic carbon (SOC) in terrestrial ecosystems is critical for long-term productivity. Simulation models of SOC dynamics are valuable tools in predicting the impacts of climate on carbon storage and developing management strategies for the mitigation of greenhouse gas emissions, however, their utility is generally reduced due to need for specific data. The SOCRATES model is a simple process based representation of soil SOC dynamics in terrestrial ecosystems, which requires minimal data inputs and specifically designed to examine the impact of land use and land use change on soil carbon storage. SOCRATES was successful in predicting SOC change at eighteen long-term crop, pasture and forestry trials from North America, Europe and Australasia. These trials ranged from 8 to 86 years in duration, over a wide range of climates and soil types with annual changes in SOC ranging from −3.0 to 4.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.