Abstract

BackgroundMonitoring inequalities in chronic disease prevalence and their preventive care can help build effective strategies to improve health equality. Using hypertension and diabetes as a model, this study measures and decomposes socioeconomic inequalities in their prevalence and preventive care among Chinese adults aged 45 years and older in Shaanxi Province, an underdeveloped western region of China.MethodsData of 27,728 respondents aged 45 years and older who participated in the fifth National Health Services Survey conducted in 2013 in Shaanxi Province were analyzed. The relative indexes of inequalities based on Poisson regressions were used to assess disparities in the prevalence of hypertension and diabetes and their preventive care between those with the lowest and the highest socioeconomic status, and the concentration index was used to measure the magnitude of the socioeconomic-related inequality across the entire socioeconomic spectrum. The contribution of each factor to the inequality was further estimated via the concentration index decomposition.ResultsOur results indicate a higher prevalence of hypertension and diabetes among the rich than the poor individuals aged 45 years and older in Shaanxi Province, China. Among individuals with hypertension or diabetes, significant inequalities favoring the rich were observed in the use of preventive care, i.e. in adequate use of medication and of blood pressure/blood glucose monitoring. Furthermore, economic status, educational level, employment status, and urban-rural areas were identified as the key socioeconomic indicators for monitoring the inequalities in the patient preventive care.ConclusionsOur study suggests that the existence of clear inequities in the prevalence of chronic diseases and preventive care among adults aged 45 and older in Shaanxi Province, China. These inequalities in chronic diseases could be as much a cause as a consequence of socioeconomic inequalities.

Highlights

  • Monitoring inequalities in chronic disease prevalence and their preventive care can help build effective strategies to improve health equality

  • Among the respondents with diabetes, 74.2% of the patients took adequate medication and 86.3% of the patients had their blood glucose tested in the three months prior to the survey

  • Our results suggest a higher prevalence of hypertension and diabetes among the rich compared to the poor, and clear inequalities in the preventive care favoring the rich among individuals with hypertension or diabetes in Shaanxi Province, China

Read more

Summary

Introduction

Monitoring inequalities in chronic disease prevalence and their preventive care can help build effective strategies to improve health equality. Using hypertension and diabetes as a model, this study measures and decomposes socioeconomic inequalities in their prevalence and preventive care among Chinese adults aged 45 years and older in Shaanxi Province, an underdeveloped western region of China. Studies conducted in high-income countries have indicated that socioeconomic inequality in the prevalence of chronic non-communicable diseases (NCDs) is the leading cause of inequalities in life expectancy and total mortality among the rich and the poor [5,6,7]. The increased emergence of NCDs has serious economic and public health consequences, especially in many lowand middle-income countries [8]. NCDs will become another significant public health threat if the trend continues

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.