Abstract

Studies indicate differences in the clinical phenotypes and neuroimaging of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) compared to multiple sclerosis; however, there are limited data assessing the socioeconomic and paraclinical differences between these distinct disorders. This retrospective study identified patients aged <18 years at time of diagnosis with MOGAD or multiple sclerosis. Demographics, birth history, socioeconomic factors (insurance type, median income, parental education level), and paraclinical features (clinical manifestations, laboratory evaluation) were recorded for eligible participants. Seventy-eight patients (28 MOGAD, 50 multiple sclerosis) met inclusion criteria. Mothers of MOGAD children were more likely to have attended college compared to the mothers of children with multiple sclerosis (80% vs 49%; P = .02). Though MOGAD patients had greater rates of day care attendance (81% vs 57%), lower rates of birth complications (7% vs 21%), and higher rates of being breastfed (65% vs 46%), these findings did not meet predefined statistical significance. Clinically, children with MOGAD exhibited a lower body mass index percentile at presentation (58th ± 27th percentile vs 83rd ± 20th percentile; P = .0001) and were younger (7.6 ± 4.1 vs 14.8 ± 1.6 years; P < .0001) and more likely to exhibit an infectious prodrome (57% vs 10%; P < .0001). MOGAD patients were less likely to have evidence of remote Epstein-Barr virus infection (29% vs 100%; P < .0001) and less likely to have ≥3 unique oligoclonal bands in the cerebrospinal fluid (5% vs 87%; P < .001). Compared with multiple sclerosis, children with MOGAD exhibit lower body mass index percentiles at presentation, are more likely to have mothers with higher education levels, and are less likely to have had prior Epstein-Barr virus infection. Our data confirm that MOGAD patients are younger, more likely to exhibit infectious prodrome, and are less likely to exhibit intrathecal synthesis of oligoclonal bands. These features provide new insights into the differentiating pathobiology of MOGAD and may be helpful in differentiating these children from multiple sclerosis early in the diagnostic evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call