Abstract

ObjectivesMild cognitive impairment (MCI) is a transitional stage between normal cognitive aging and dementia that increases the risk of progressive cognitive decline. Early prediction of MCI could be beneficial for identifying vulnerable individuals in the community and planning primary and secondary prevention to reduce the incidence of MCI. DesignA narrative review and cohort study. Setting and ParticipantsWe review the MCI prediction based on the assessment of sociodemographic factors. We included participants from 3 surveys: 8915 from wave 2011/2012 of the China Health and Retirement Longitudinal Study (CHARLS), 9765 from the 2011 Chinese Longitudinal Healthy Longevity Survey (CLHLS), and 1823 from the 2014 Rugao Longevity and Ageing Study (RuLAS). MethodsWe searched in PubMed, Embase, and Web of Science Core Collection between January 1, 2019, and December 30, 2022. To construct the composite risk score, a multivariate Cox proportional hazards regression model was used. The performance of the score was assessed using receiver operating characteristic (ROC) curves. Furthermore, the composite risk score was validated in 2 longitudinal cohorts, CLHLS and RuLAS. ResultsWe concluded on 20 articles from 892 available. The results suggested that the previous models suffered from several defects, including overreliance on cross-sectional data, low predictive utility, inconvenient measurement, and inapplicability to developing countries. Our empirical work suggested that the area under the curve for a 5-year MCI prediction was 0.861 in CHARLS, 0.797 in CLHLS, and 0.823 in RuLAS. We designed a publicly available online tool for this composite risk score. Conclusions and ImplicationsAttention to these sociodemographic factors related to the incidence of MCI can be beneficially incorporated into the current work, which will set the stage for better early prediction of MCI before its incidence and for reducing the burden of the disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.