Abstract
Children's mental health status (MHS) is frequently influenced by their primary carers (PCs), underscoring the significance of monitoring disparities longitudinally. This research investigated the association between socio-demographic clusters and mental health trajectories among children and their PCs over time. Data from waves 6-9c2 of the Longitudinal Study of Australian Children (LSAC) were analyzed using Latent Class Analysis (LCA) to identify four socio-demographic classes among children aged 10-11 years at wave 6. Multinomial logistic regression and predictive marginal analysis explored associations between classes and mental health outcomes. PCs in Class 4 (disadvantaged and separated families with indigenous children) exhibited higher odds of borderline and abnormal MHS compared to Class 1 (prosperous and stable working families) across all waves. However, while MHS of PCs' impacted children consistently, the association with socio-demographic classes was significant only in wave 6. Class 4 children had elevated risks of mental illness compared to Class 1, while Class 3, characterized by educated working mothers, had lower risks. Reducing mental health risks entails addressing socio-economic disparities, supporting stable family structures, and offering tailored interventions like counseling and co-parenting support. Longitudinal monitoring and culturally sensitive approaches are crucial for promoting mental well-being across diverse groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.