Abstract

Despite the local and global importance of forests, deforestation is driven by various socio-economic and biophysical factors continues in many countries. In Nepal, in response to massive deforestation, the community forestry program has been implemented to reduce deforestation and support livelihoods. After four decades of its inception, the effectiveness of this program on forest cover change remains mostly unknown. This study analyses the spatial and temporal patterns of tree cover change along with a few socio-economic drivers of tree cover change to examine the effectiveness of the community forestry program for conserving forests or in reducing deforestation. We also investigate the socio-economic factors and policy responses as manifested through the community forestry program responsible for the tree cover change at the district level. The total tree cover area in the year 2000 in Nepal was ∼4,746,000 hectares, and our analysis reveals that between 2001 and 2016, Nepal has lost ∼46,000 ha and gained ∼12,200 ha of areas covered by trees with a substantial spatial and temporal variations. After accounting socio-economic drivers of forest cover change, our analysis showed that districts with the larger number of community forests had a minimum loss in tree cover, while districts with the higher proportion of vegetation covered by community forests had a maximum gain in tree cover. This indicates a positive contribution of the community forestry program to reducing deforestation and increasing tree cover.

Highlights

  • Forests play multiple roles in climate regulation, protection from extreme events, water filtration, carbon sequestration, and biodiversity habitat apart from providing provisioning ecosystem services such as food, timber, and medicines (Lambrechts, Wilkie & Rucevska, 2009; Anderegg, Kane & Anderegg, 2013)

  • Our results indicate that the community forestry program played a crucial role in reducing deforestation and increasing the forest area at the district level

  • The analysis at the village development committees (VDCs), the lowest political unit of Nepal could provide more detail overview of tree cover change, the information on socio-economic drivers is available only at a district level. Despite this shortcoming due to limitations in data availability, our study has highlighted the different factors of deforestation and the effectiveness of the major forest conservation policy in Nepal albeit at a coarse scale

Read more

Summary

Introduction

Forests play multiple roles in climate regulation, protection from extreme events, water filtration, carbon sequestration, and biodiversity habitat apart from providing provisioning ecosystem services such as food, timber, and medicines (Lambrechts, Wilkie & Rucevska, 2009; Anderegg, Kane & Anderegg, 2013). Forests regulate regional and global climate through evapotranspiration, which in turn affects the precipitation regime and the water cycle (Chagnon & Bras, 2005). About 45% of carbon found in terrestrial ecosystems is stored in forests, and forests sequester more than 25% of annual anthropogenic carbon. With the majority of the world’s terrestrial species of plants, animals, and microorganisms, are one of the richest biological areas on Earth (Lindenmayer, Margules & Botkin, 2000). About 1.3 billion people, primarily in developing countries, rely on forests for their subsistence livelihoods and a significant part of cash income (Wasiq & Ahmad, 2004)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call